PAST EXAM PAPER & MEMO N3

ABOUT THE QUESTION PAPERS:

THANK YOU FOR DOWNLOADING THE PAST EXAM PAPER AND ITS MEMO, WE HOPE IT WILL BE OF HELP TO YOU. SHOULD YOU NEED MORE QUESTION PAPERS AND THEIR MEMOS PLEASE SEND US AN EMAIL TO INFO@EKURHULENITECH.CO.ZA AND WE WILL SEND YOU A FULL DOWNLOAD VERSION OF THESE. HOWEVER PLEASE NOTE THAT THESE ARE SOLD FOR A SMALL AMOUNT OF R300 PER DOWNLOAD PER SUBJECT.

ABOUT REGISTERING WITH OUR COLLEGE

CONSIDER REGISTERING WITH OUR COLLEGE AND WE HAVE THE FOLLOWING TYPES OF LEARNING:

- ONLINE OR CORRESPONDENCE LEARNING. THIS IS THE MOST PREFERRED ONE BY THOUSANDS
- PART-TIME CLASSES DURING SATURDAYS IF NEAR OUR OFFICES IN KRUGERSDORP
- FULL-TIME CLASSES IF NEAR OUR CLASSES IN KRUGERSDORP

ABOUT EXTRA TEXTBOOKS

IF LOOKING FOR TEXTBOOKS FOR CERTAIN SUBJECTS I N1-N6 ENGINEERING STUDIES PLEASE SEND US AN EMAIL ON INFO@EKURHULENITECH.CO.ZA

ABOUT VIDEO MATERIAL

WE HAVE VIDEO MATERIAL FOR EXTRA UNDERSTANDING ON CERTAIN ENGINEERING FOR A FEE. REQUEST A QUOTE. SEND US AN EMAIL ON INFO@EKURHULENITECH.CO.ZA
This question paper consists of 7 pages and 1 formula sheet of 3 pages.
INSTRUCTIONS AND INFORMATION

1. Answer ALL the questions.
2. Read ALL the questions carefully.
3. Number the answers according to the numbering system used in this question paper.
4. The correct information must be copied from the question paper and substituted for the correct symbol.
5. Keep the subsections of questions together.
6. Rule off after the completion of EACH question.
7. Sketches and diagrams must be done in pencil.
8. The sketches/diagrams must be neat, reasonably large and fully labelled.
9. The answers must be worked to THREE decimal places.
10. Use the correct units for answers.
11. Write neatly and legibly.
QUESTION 1

1.1 Choose the correct word(s) from those given in brackets. Write only the word(s) next to the question number (1.1.1–1.1.2) in the ANSWER BOOK.

1.1.1 The (field winding, yoke, pole shoes) is that part of the DC machine which protects the inner parts. (2)

1.1.2 (Field poles, pole shoes, carbon brushes) are used to increase the efficiency of the magnetic path. (2)

1.2 Briefly explain the following methods to minimise the effects of armature reaction.

1.2.1 Brush shifting (2)

1.2.2 Interpoles (2)

1.2.3 Increasing the field flux (2)

QUESTION 2

2.1 State FOUR factors which the magnitude of an induced EMF in a conductor depends on. (4)

2.2 Name TWO generators which are dependent on the excitation process in order to operate, and support your answer with two relevant sketches. (6)
QUESTION 3

3.1 State TWO important reasons for the decrease in terminal voltage of a separately excited generator. (2)

3.2 Name ONE purpose of the separately excited generator. (1)

3.3 Briefly state ONE application for each of the following types of generator.
 3.3.1 Shunt generator (1)
 3.3.2 Series generator (1)

3.4 Name TWO variable factors that the torque of a DC motor depends on. (2)

3.5 Name THREE applications of the series motors. (3)

QUESTION 4

A brake test was performed on a DC motor and the following information obtained:

- The drum radius = 300 mm
- Drum speed = 420 rev/min
- Effective load = 425 N.m
- The supply voltage = 0.21 kV
- The current absorbed by the motor = 33 000 mA

Determine the following:

4.1 Input power of the motor in kW (3)

4.2 Output power of the motor in kW (4)

4.3 The motor efficiency (3)
QUESTION 5

5.1 The following ordinate points were read from the full cycle of an alternating quantity.

\[e_1 = 20 \text{ V}; e_2 = 42 \text{ V}; e_3 = 83 \text{ V}; e_4 = 120 \text{ V}; e_5 = 95 \text{ V}; e_6 = 35 \text{ V}; e_7 = 18 \text{ V}. \]

Determine the following from the above data:

5.1.1 What type of alternating quantity is mentioned above? (1)

5.1.2 Actual value (3)

5.1.3 Average value (3)

5.1.4 Form factor (1)

5.1.5 What type of wave form is deduced from the value of the crest factor, if crest factor is 1.414 and form factor as calculated in QUESTION 5.1.4? (1)

5.2 Define maximum value. (1)

QUESTION 6

An RLC circuit consists of a 400 mH inductor, a resistor of 10 \(\Omega \) and a 50 mF capacitor. The circuit is connected in series across a 240 V/60 Hz supply.

Determine the following:

6.1 The impedance of the circuit (5)

6.2 The circuit current (2)

6.3 The phase angle and state whether it is leading or lagging (3)
QUESTION 7

7.1 State TWO advantages of a star connection. (2)

7.2 A 380 V, three-phase, star-connected motor is rated at 25 kW. The full load power factor is given as 0.8 and the efficiency as 85%.

Determine the following:

7.2.1 The line voltage for the motor when it runs at full load. (1)

7.2.2 The phase voltage for the motor when it runs at full load. (2)

7.2.3 The phase current for the motor when it runs at full load. (5)

[10]

QUESTION 8

8.1 What is the colour of silica gel after it absorbs moisture? (1)

8.2 Name TWO sources of losses that occur in a transformer. (2)

8.3 A single-phase transformer has 42 turns on the secondary winding and is connected to a 210V AC supply. The output voltage is 70V and the primary current is 218 mA.

Determine the following:

8.3.1 Primary number of turns (2)

8.3.2 Secondary current in amperes (2)

8.3.3 Secondary VA if ALL losses are ignored. (1)

[8]

QUESTION 9

9.1 Draw a neat labelled sketch of a dynamometer as an electrical measuring instrument. (7)

9.2 Name THREE basic mechanisms which are found in measuring instruments. (3)

[10]
QUESTION 10

10.1 Draw and label the following gates by its IEC symbols.

 10.1.1 AND gate
 10.1.2 NOR gate

10.2 Change the following decimal numbers to binary and show ALL necessary steps.

 10.2.1 \(10,5_{10} \) \(\quad \) (2)
 10.2.2 \(14,25_{10} \) \(\quad \) (2)

 10.2.3 Subtract the answer of QUESTION 10.2.1 from QUESTION 10.2.2 and leave the answer in binary number. \(\quad \) (2)

10.3 Briefly explain with the aid of a neat sketch the concept of forward bias. \(\quad \) (2)

[12]

TOTAL: 100

Copyright reserved
ELECTRO-TECHNOLOGY N3

FORMULA SHEET

Any applicable formula may also be used

1. \(E = V - I_a R_a \)
2. \(E = V + I_a R_a \)
3. \(E = 2p\Phi \frac{ZN}{60c} \)
4. \(N = \frac{V}{K\Phi} \)
5. \(T = \frac{0,318 I_a Zp\Phi}{C} \)
6. \(\text{Efficiency/Rendement} = \frac{VI}{VI + I_a^2 R_a + I_s V + C} \times 100\% \)
7. \(\text{Efficiency/Rendement} = \frac{VI - (I_a^2 R_a + I_s V + C)}{VI} \times 100\% \)
8. \(\text{Efficiency/Rendement} = \frac{2\pi N (W - S)r}{60VI} \times 100\% \)
9. \(\text{Efficiency/Rendement} = \sqrt{\frac{I_1}{I_1 + I_2}} \times 100\% \)
10. \(E = Blv \)
11. \(e = E_m \sin 2\mu ft \)
12. \(i = I_m \sin 2\mu ft \)
13. \(e_{ave\ gem} \text{ or/of } i_{ave\ gem} = 0,637 E_m \text{ or/of } I_m \)
14. \(e_{rms\ wsg} \text{ or/of } i_{rms\ wsg} = 0,707 E_m \text{ or/of } I_m \)
15. \(E_{ave\ gem} = \frac{e_1 + e_2 + e_3 + e_4 + \cdots + e_n}{n} \)
 \(\text{Or/of } I_{ave\ gem} = \frac{i_1 + i_2 + i_3 + \cdots + i_n}{n} \)
16. \[E_{\text{rms/\text{WGK}}} = \sqrt{\frac{e_1^2 + e_2^2 + e_3^2 + \ldots + e_n^2}{n}} \]

Or/\text{of} \[I_{\text{rms/\text{WGK}}} = \sqrt{\frac{i_1^2 + i_2^2 + i_3^2 + \ldots + i_n^2}{n}} \]

17. Form factor / Vormfaktor = \[\frac{E_{\text{rms/\text{WGK}}}}{E_{\text{ave/gem}}} \] \text{ or/\text{of} } \[\frac{I_{\text{rms/\text{WGK}}}}{I_{\text{AVE/GEM}}} \]

18. Crest factor/Kruinfaktor = \[\frac{E_{m}}{E_{\text{rms/\text{WGK}}}} \] \text{ or/\text{of} } \[\frac{I_{m}}{I_{\text{rms/\text{WGK}}}} \]

19. \[I = \frac{V}{R} \]

20. \[X_L = 2\mu F; \quad i = \frac{V}{X_L} \]

21. \[X_C = 2\mu F; \quad i = \frac{V}{X_C} \]

22. \[Z = \sqrt{R^2 + X_L^2}; \quad Z = \sqrt{R^2 + X_C^2}; \quad I = \frac{V}{Z} \]

23. \[\tan \theta = \frac{X_L}{R}; \quad \tan \theta = \frac{X_C}{R} \]

24. \[V_R = I \times R; \quad V_L = I \times X_L; \quad V_C = I \times X_C \]

25. \[Z = \sqrt{R^2 + (X_L - X_C)^2}; \quad Z = \sqrt{R^2 + (X_C - X_L)^2} \]

26. \[\tan \theta = \frac{X_L - X_C}{R}; \quad \tan \theta = \frac{X_C - X_L}{R} \]

27. \[P = V \times I; \quad P = I^2 R; \quad P = \frac{V^2}{R} \]

28. \[P = V I \cos \theta \]

29. \[\cos \theta = \frac{R}{Z}; \quad \cos \theta = \frac{\text{Wor/\text{ofkW}}}{\text{VAr/\text{ofkVA}}} \]

30. \[I_{\text{active/aktief}} = I \cos \theta; \quad I_{\text{reactive/reaktief}} = I \sin \theta \]

31. \[P = V I \cos \theta \]

\[Q = V I \sin \theta \]
32. \[f_r = \frac{1}{2\pi\sqrt{LC}} \]

33. \[I = \sqrt{I_R^2 + I_L^2} \quad \text{Tan } \theta = \frac{I_L}{I_R} \]

34. \[I = \sqrt{I_R^2 + I_C^2} \quad \text{Tan } \theta = \frac{I_C}{I_R} \]

35. \[I = \sqrt{I_R^2 + (I_L - I_C)^2} \quad \text{Tan } \theta = \frac{I_L - I_C}{I_R} \]

36. \[I = \sqrt{I_R^2 + (I_C - I_L)^2} \quad \text{Tan } \theta = \frac{I_C - I_L}{I_R} \]

37. \[\text{Cos } \theta = \frac{I_R}{I} \]

38. \[V_L = V_p \quad I_L = \sqrt{3}I_p \]

39. \[V_L = \sqrt{3}V_p \quad I_L = I_p \]

40. \[W = \sqrt{3}V_LI_L\text{Cos } \theta \times \eta \]

41. \[\frac{V_1}{V_2} = \frac{N_1}{N_2} = \frac{I_2}{I_1} \]

42. \[kVA = \frac{\sqrt{3}V_LI_L}{1000} \]

43. \[V_{\text{shunt}} = V_{\text{meter}} \quad I_sR_s = I_mR_m \]

44. \[I_T = I_m + I_s \]

45. \[I_s = \frac{V_t}{R_s} \]
MARKING GUIDELINE

NATIONAL CERTIFICATE

APRIL EXAMINATION

ELECTRO-TECHNOLOGY N3

5 APRIL 2016

This marking guideline consists of 11 pages.
QUESTION 1

1.1 1.1.1 Yoke ✓
1.1.2 Pole shoes ✓

1.2 1.2.1 • By moving brushes backwards in the motor. ✓
• By moving brushes forwards in the generator. ✓

1.2.2 • Interpoles are smaller poles placed between the main poles. ✓
• Connected in series with the armature and must have the same polarity as the main poles - passed in the motor – to ensure sparkless commutation. ✓

1.2.3 • By making use of series winding on the main field poles. ✓
• Varying the main field to the load condition. ✓

QUESTION 2

2.1 • The number of pairs of poles used. ✓
• The strength of the magnetic field or flux. ✓
• The rate at which the magnetic flux is cut by the moving conductor. ✓
• The number of active conductors connected in series. ✓

2.2 Separately excited generator. ✓

[10]

For correct labelled sketch

Self-excited generator ✓

For correct labelled sketch
QUESTION 3

3.1 • Effective field flux is reduced due to armature reaction as the load increases. ✓
• Voltage drop due to the armature circuit resistance. ✓ (2)

3.2 Used as the generator in the Ward-Leonard motor generator system. ✓ (1)

3.3 3.3.1 Shunt generator – it is used where a constant voltage is required. ✓ (1)

3.3.2 Series generator – as a booster on DC transmission line. ✓ (1)

3.4 • Flux (Φ) ✓
• Armature current (Ia) ✓ (2)

3.5 • Driving crane ✓
• Train ✓
• Hoists ✓
• Lifts
• Trolley buses
• Electric vehicle (Any 3 x 1) (3) [10]
QUESTION 4

Given: \(R = 300 \text{ mm} = 0.3 \text{ m} \); \(N = 420 \text{ r/min} \); effective load = 425 N.m
\(V = 0.21 \text{ kV} = 210 \text{ V} \); \(I = 33 000 \text{ m A} = 33 \text{A} \)

4.1 Input Power \([P]\) = \(IV\)
\[
= 33 \text{ A} \times 210 \text{ V} \\
= 6930 \text{ W} \\
= 6.93 \text{ kW} \quad \text{Answer} \quad (3)
\]

4.2 Output Power \([P]\) = \(\frac{2 \times \Pi NWr}{60} \)
\[
= \frac{2 \times 3.142 \times 420 \times 425 \times 0.3}{60} \\
= 5608.47 \text{ W} \\
= 5.609 \text{ kW} \quad \text{Answer} \quad (4)
\]

4.3 Efficiency = \(\frac{Output}{Input} \times 100\% \)
\[
= \frac{5.609 \text{ kW}}{6.93 \text{ kW}} \times 100\% \\
= 80.938 \% \quad \text{Answer} \quad (3)
\]
QUESTION 5

Given: $e_1 = 20 \text{ V}; e_2 = 42 \text{ V}; e_3 = 83 \text{ V}; e_4 = 120 \text{ V}; e_5 = 95 \text{ V}; e_6 = 35 \text{ V}; e_7 = 18 \text{ V}$.

5.1 5.1.1 Alternating voltage. ✓

5.1.2 Actual $[E_{RMS}] = \sqrt{\frac{e_1^2 + e_2^2 + e_3^2 + e_4^2 + e_5^2 + e_6^2 + e_7^2}{n}}$

$= \sqrt{\frac{20^2 + 42^2 + 83^2 + 120^2 + 95^2 + 35^2 + 18^2}{7}}$

$= \sqrt{\frac{34027}{7}}$

$= 69.721 \text{ V}✓$ Answer (3)

5.1.3 Average Value $[E_{AVE}] = \frac{e_1 + e_2 + e_3 + e_4 + e_5 + e_6 + e_7}{7}$

$= \frac{(20 + 42 + 83 + 120 + 95 + 35 + 18)}{7}$

$= 59 \text{ V}✓$ Answer (3)

5.1.4 Form factor $\frac{E_{RMS}}{E_{AVE}} = \frac{69.721 \text{ V}}{59 \text{ V}}$

$= 1.182$ Answer ✓ (1)

5.1.5 • Sine wave ✓
• Peak wave
• Sinusoidal wave (Any 1 x 1) (1)

5.2 Maximum value – is the maximum or peak value of an alternating voltage or current. ✓ (1) [10]
QUESTION 6

6.1 \[X_L = 2\pi f L \quad \text{and} \quad X_C = \frac{1}{2\pi f C} \]

\[= 2 \times 3,142 \times 60 \times 400 \times 10^{-3} = \frac{1}{2 \times 3,142 \times 60 \times 50 \times 10^{-6}} \]

\[= 150,816 \Omega \quad \text{Answer} \quad = 53,045 \Omega \quad \text{Answer} \]

Impedance of the circuit \([Z] = \sqrt{R^2 + (X_L - X_C)^2} \]

\[= \sqrt{10^2 + (150,816 - 53,045)^2} \quad \text{Answer} \]

\[= 98,281 \Omega \quad \text{Answer} \quad (5) \]

6.2 Circuit current \([I] = \frac{V}{Z} \]

\[= \frac{240V}{98,281\Omega} \quad \text{Answer} \]

\[= 2,442 A \quad \text{Answer} \quad (2) \]

6.3 Phase angle: \[\tan \theta = \frac{X_L - X_C}{R} \]

\[= \frac{150,816 - 53,045}{10} \quad \text{Answer} \]

\[\theta = \tan^{-1} 9.777 \quad \text{Answer} \]

\[= 84,160^\circ \text{ lagging} \quad (3) \]

[10]
QUESTION 7

7.1 • With a star connection two voltages are available, namely V_L and V_{ph}.
• By earthing the neutral, earth leakage protection is simplified.

7.2 7.2.1 $V_L = 380 \, \text{V}$ \(\checkmark\) (Given)

7.2.2 $V_L = \sqrt{3} V_{ph}$

$V_{ph} = \frac{380 \, \text{V}}{\sqrt{3}} \checkmark$

$= 219.393 \, \text{V} \checkmark \quad \text{Answer}$

7.2.3 Input power $= \frac{\text{Output}}{\eta} \times 100$

$= \frac{25000}{85} \times 100 \checkmark$

$= 29411.765 \, \text{W} \checkmark \quad \text{Answer}$

$\eta = \frac{\sqrt{3} \times V_L \times I_L \times \cos \theta}{\text{Output}}$

$I_L = \frac{29411.765 \, \text{W}}{\sqrt{3} \times 380 \times 0.8} \checkmark$

$= 55.858 \, \text{A} \quad \text{Answer} \checkmark$

Therefore $I_C = I_{ph}$ (In star connection)

$I_{ph} = 55.858 \, \text{A} \checkmark \quad \text{Answer}$

[10]
QUESTION 8

8.1 Pink ✓ (1)

8.2 • Winding ✓ (2)
• Core ✓

8.3 8.3.1 Primary number of turns \[N_1 \] = 42 \times \frac{210V}{70V} \checkmark
\[= 126 \text{ turns} \checkmark \] Answer (2)

8.3.2 \[\frac{V_1}{V_2} = \frac{I_2}{I_1} \]
\[I_2 = \frac{210V \times 0.218A}{70V} \checkmark \]
\[= 0.654 \text{ A} \checkmark \] Answer (2)

8.3.3 Secondary volt-ampere = \(VI \)
\[= 70 \text{ Volt} \times 0.654 \text{ A} \]
\[= 45.78 \text{ VA} \checkmark \] Answer (1) [8]
QUESTION 9

9.1 FOUR marks for ANY RELEVANT correct labelling

THREE marks for correct sketch. (7)

9.2 • A deflecting device ✓
• A controlling device ✓
• A damping device ✓ (3) [10]
QUESTION 10

10.1 10.1.1

![AND gate diagram]

✓ ✓ for correct diagram and labelling (2)

10.1.2

![NOR gate diagram]

✓ ✓ for correct diagram and labelling (2)

10.2 10.2.1

<table>
<thead>
<tr>
<th>2</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

remainder 0 0,5 x 2 = 1
remainder 1
remainder 0 ✓
remainder 1

10,5\(_{10}\) = 1010,1\(_2\) ✓ Answer (2)

10.2.2

<table>
<thead>
<tr>
<th>2</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

remainder 0 0,25 x 2 = 0
remainder 1 0,5 x 2 = 1
remainder 1 ✓
remainder 1

14,25\(_{10}\) = 1110,01\(_2\) ✓ Answer (2)

10.2.3

-1010,10
1110,01
0011,11

✓ ✓ ✓ Answer (2)
10.3

Movement of charge carriers

\[\begin{array}{c}
\text{P} & \text{N} \\
\text{Current flows} & \checkmark \\
\end{array} \]

FORWARD BIAS

1 for correct sketch and 1 for labelling

(2) [12]

TOTAL: 100
REGISTRATION WITH OUR COLLEGE

CONSIDER REGISTERING WITH OUR COLLEGE AND WE HAVE THE FOLLOWING TYPES OF LEARNING:

 ✓ **ONLINE OR CORRESPONDENCE LEARNING.** THIS IS THE MOST PREFERENCES ONE BY THOUSANDS

 ✓ **PART-TIME CLASSES** DURING SATURDAYS IF NEAR OUR OFFICES IN KRUGERSDORP

 ✓ **FULL-TIME CLASSES** IF NEAR OUR CLASSES IN KRUGERSDORP

ABOUT EXTRA TEXTBOOKS

IF LOOKING FOR TEXTBOOKS FOR CERTAIN SUBJECTS I N1-N6 ENGINEERING STUDIES PLEASE SEND US AN EMAIL ON INFO@EKURHULENITECH.CO.ZA

ABOUT VIDEO MATERIAL

WE HAVE VIDEO MATERIAL FOR EXTRA UNDERSTANDING ON CERTAIN ENGINEERING FOR A FEE. REQUEST A QUOTE. SEND US AN EMAIL ON INFO@EKURHULENITECH.CO.ZA