

higher education & training

Department: Higher Education and Training REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE

INDUSTRIAL ELECTRONICS N2

(8080602)

17 August 2021 (X-paper) 09:00–12:00

Drawing instruments and nonprogrammable calculators may be used.

This question paper consists of 6 pages and a formula sheet of 2 pages.

DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE INDUSTRIAL ELECTRONICS N2 TIME: 3 HOURS MARKS:100

INSTRUCTIONS AND INFORMATION

- 1. Answer all the questions.
- 2. Read all the questions carefully.
- 3. Number the answers according to the numbering system used in this question paper.
- 4. Draw all sketches and diagrams in pencil.
- 5. Round off all final answers to THREE decimals.
- 6. Write neatly and legibly.

QUESTION 1

- 1.1 Indicate whether the following statements are TRUE or FALSE by writing only 'True' or 'False' next to the question number (1.1.1–1.1.5) in the ANSWER BOOK.
 - 1.1.1 Resistance is directly proportional to the voltage in a circuit.
 - 1.1.2 The atom is the smallest part of an element that can take part in a normal chemical reaction.
 - 1.1.3 Mica is an insulating material
 - 1.1.4 Oxygen atom has only six valence electrons
 - 1.1.5 The positive temperature coefficient (PTC)means that when the resistance of a conductor is increased, its temperature will decrease. (5×1)
- 1.2 Choose the correct answer from COLUMN B, that matches a description in COLUMN A. Write only the letter (A-E) next to the question number (1.2.1-1.2.5) in the ANSWER BOOK.

	COLUMN A		COLUMN B
1.2.1	Stores electric field	Α	Inductor
1.2.2	PN-junction	В	N-type material
1.2.3	Allows current to flow	С	Diode
1.2.4	Excess of electrons	D	Capacitor
1.2.5	Stores magnetic field	Е	Conductor
			(5 × 1)

(5) [**10**]

(5)

QUESTION 2

Refer to the circuit diagram above and calculate:

2.1.1	The total resistance in the circuit	(6)
2.1.2	The total current in the circuit 🇳	(2)
2.1.3	The volt drop across resistor R_3	(3)
2.1.4	The value of the current passing through R_3	(2)
2.1.5	The power consumed by the resistor R_2 $rightarrow$	(3)
List FOUR factors that can affect the resistance of a conductor.		(4) [20]

2.2

QUESTION 3

4.1	Explain the operating principle of a photodiode.	(4)
4.2	Also show the operating principle in question 4.1 by means of a drawing.	(4)
4.3	Complete the following sentence by writing only the missing word or words in the ANSWER BOOK.	
	A light-dependent resistor is also known as a …	(2)
4.4	Draw a circuit symbol for the light dependent resistor (LDR)	(2)
4.5	Draw the construction, circuit symbol and characteristic curve of a light-emitting diode (LED).	(6) [18]

-6-

QUESTION 5

- 5.1 Draw a neat, labelled circuit configuration of a common collector using an NPN-transistor and show the input and output waveforms. (6)
- 5.2 The transistor had both input and output characteristic curves.

Draw a neat, labelled diagram of the output characteristic curve and clearly show the saturation, cut-off and active regions. (5)

5.3 Refer to QUESTION 5.2 and explain how a transistor operates under each region. (3×2) (6)

QUESTION 6

6.3

6.1 An operational amplifier has an input impedance of 600 Ω and is connected to a 10 Ω speaker.

Calculate the voltage across the speaker if the current measured may not exceed 2 mA with a gain of 40 dB for the amplifier.

6.2 A current of 45 A must be measured. The meter has an internal resistance of 150 Ω and full-scale deflection of 20 mA.

Calculate:

6.2.1	The value of the shunt current	(2)
6.2.2	The value of the shunt resistor	(3)
Draw a neat, labelled circuit of the ampere meter used in QUESTION 6.2.		(3) [15]

TOTAL : 100

[17]

(7)

FORMULA SHEET

DIRECT CURRENT THEORY

$$V = I \cdot R P = V \cdot I P = \frac{V^2}{R} P = \frac{V^2}{R} P = \frac{V^2}{R} P = \frac{V^2}{R} P = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} P = \frac{1}{R_1} + \frac{1}{R_$$

ALTERNATING CURRENT THEORY

$$t = \frac{1}{f}$$

$$e = E_m Sin\theta$$

$$e = E_m Sin\theta$$

$$i = I_m Sin\theta$$

$$i = I_m Sin\theta$$

$$i = I_m Sin\omega t$$

$$V_{rms} = 0,707V_{max}$$

$$I_{rms} = 0,707I_{max}$$

$$V_{ave} = 0,637V_{max}$$
Form factor = $\frac{rms \text{ value}}{average \text{ value}}$

$$\begin{aligned} \text{Crest factor} &= \frac{\text{maximum value}}{\text{rms value}} \\ E_{ave} &= \frac{e_1 + e_2 + e_3 + e_4 + e_5 + \dots + e_n}{n} \\ E_{rms} &= \sqrt{\frac{e_1^2 + e_2^2 + e_3^2 + e_4^2 + e_5^2 + \dots + e_n^2}{n}} \\ I_{ave} &= \frac{i_1 + i_2 + i_3 + i_4 + i_5 + \dots + i_n}{n} \\ \omega &= 2\pi f \end{aligned} \\ \begin{aligned} \omega &= 2\pi f \\ u_{rms} &= \sqrt{\frac{i_1^2 + i_2^2 + i_3^2 + i_4^2 + i_5^2 + \dots + i_n^2}{n}} \\ X_L &= 2\pi f L \\ &X_L &= 2\pi f L \\ &X_L &= 2\pi f L \\ &V_T &= \sqrt{V_R^2 + V_C^2} \\ &Z &= \sqrt{R^2 + V_C^2} \\ &Z &= \sqrt{R^2 + V_L^2} \\ &Z &= \sqrt{R^2 + (X_L - X_C)^2} \\ &Z &= \sqrt{R^2 + X_L^2} \\ &I_R &= \frac{V_T}{R} \\ &I_L &= \frac{V_T}{X_L} \\ &I_C &= \frac{V_T}{X_C} \\ &V_L &= I \cdot X_L \\ &V_C &= I \cdot X_C \\ &V_C &= I \cdot X_C \\ &U_L &= I \cdot X_L \\ &\theta &= \cos^{-1} \frac{I_R}{I_T} \\ &\theta &= \cos^{-1} \frac{I_R}{I_T} \\ \end{aligned}$$

$$f_r = \frac{1}{2\pi\sqrt{LC}}$$

MEASURING INSTRUMENTS

$$R_{SH} = \frac{I_M R_M}{I_{SH}} \qquad \qquad R_S = \frac{V}{I_M} - R_M$$

TRANSISTORS

 $I_E = I_C + I_B$

DECIBEL RATIOS

$$\begin{split} N &= 10 \log \frac{P_{OUT}}{P_{IN}} & N = 20 \log \frac{I_{OUT}}{I_{IN}} + 10 \log \frac{R_{OUT}}{R_{IN}} & N = 20 \log \frac{V_{OUT}}{V_{IN}} + 10 \log \frac{R_{IN}}{R_{OUT}} \\ If R_{IN} = R_{OUT}: & N = 20 \log \frac{V_{OUT}}{V_{IN}} & N = 20 \log \frac{I_{OUT}}{I_{IN}} \end{split}$$

RESISTANCE

$$R = \frac{\rho \ell}{A} \qquad \qquad A = \frac{\pi d}{4}$$