

NATIONAL CERTIFICATE MECHANOTECHNOLOGY N3

(8190373)

25 August 2021 (X-paper) 09:00–12:00

This question paper consists of 7 pages, 2 tables and 1 formula sheet.

142Q1G2102

(8190373) -2-

DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA

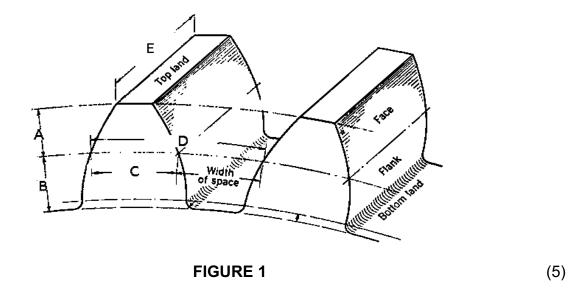
NATIONAL CERTIFICATE MECHANOTECHNOLOGY N3 TIME: 3 HOURS MARKS: 100

INSTRUCTIONS AND INFORMATION

- 1. Answer all the questions.
- 2. Read all the questions carefully.
- 3. Number the answers according to the numbering system used in this question paper.
- 4. Start each question on a new page.
- 5. Use only black or blue pen.
- 6. Write neatly and legibly.

(8190373) -3-

QUESTION 1: POWER TRANSMISSION, CLUTCHES AND COUPLING OF SHAFTS


1.1 A 16N SPB wedge belt is fitted between an electrical motor and a hammer mill.

The following information is given:

Design power of the electric motor		60 kW
Correction factor		0,9
Service factor		1,2
Type of start		'soft'
Basic power per belt		22 kW
Power increment/additional power per belt	2 kW	
Type of duty operation		'medium'
Operational hours per duty shift		9 hours
Speed of the electric motor		1400 r/min

Calculate the following:

- 1.1.1 The power of the electric motor. (2)
- 1.1.2 Corrected power per belt. (3)
- 1.1.3 The number of belts driving the mill. (3)
- 1.2 Couplings are classified into 3 groups. Name them (3)
- 1.3 Refer to FIGURE 1 below of a gear tooth terms and label the different parts (A–E), as indicated. Write only the answers next to the letter (A–E) in the ANSWER BOOK.

(8190373) -4

1.4 Refer to FIGURE 2 (below) of a multi-disc clutch and label the different parts (A–C), as indicated. Write only the answers next to the letter (A–C) in the ANSWER BOOK:

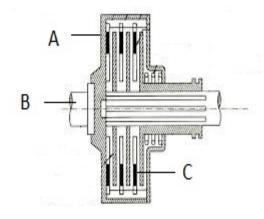


FIGURE 2

(3) **[19]**

> (2) **[6]**

QUESTION 2: BRAKES

A brake is a device operated by electromagnetic, hydraulic, air-pressure, mechanical means.

State FOUR functions of a brake in a vehicle or machine. (4)

2.2 Give TWO advantages of electromagnetic braking system

QUESTION 3: BEARINGS

- 3.1 Name THREE types of loads applicable to anti-friction bearings. (3)
- 3.2 Name FIVE types of friction bearings.

 [5]

(8190373) -5-

QUESTION 4: WATER PUMPS, COOLING AND LUBRICATION

4.1	'True' or	whether the following statements are TRUE or FALSE by writing only 'False' next to the question number (4.1.1–4.1.6) in the BOOK. Give ONE reason for each answer.	
	4.1.1	In a piston pump the length of a piston is longer than its stroke.	
	4.1.2	For external packing in a plunger or piston pump, it is possible to replace or adjust the packing without opening the pump.	
	4.1.3	Pumps with internal packing are suitable only for pure clean fluids under medium pressure	
	4.1.4	The collision of water within a pipe may cause 'water hammer'	
	4.1.5	Centrifugal pumps are suitable for pumping heavy gas.	
	4.1.6	Another term for flood suction is negative head (6×1)	(6)
4.2	Give THR cool.	REE reasons why it is necessary for a welding machine to be kept	(3)
4.3	•	n the use of an oil can or grease pot to lubricate machinery, list FIVE thods that can be used to apply lubrication on machine parts and ints.	(5) [14]
QUEST	ION 5: HYI	DRAULICS AND PNEUMATICS	
5.1		a hydraulic press can exert a force of 13 000 N if a force of 250 N is n a piston.	
	If the dian	neter of the piston is 70 mm calculate the following:	
	5.1.1	The diameter of the ram in mm. Round your answer to THREE decimal places	(4)
	5.1.2	The pressure in the fluid in kPa.	(3)
5.2	Make nea	at drawings of the ISO symbols as applicable to pneumatic systems owing:	
	5.2.1	A compressor	
	5.2.2	A filter	

[11] Copyright reserved Please turn over

 (4×1)

(4)

A pressure gauge

A lubricator

5.2.3

5.2.4

(8190373) -6-

QUESTION 6: INTERNAL COMBUSTION ENGINE

6.1 Label the different parts of a carburettor (A–C) in FIGURE 3 below. Write the only the answers next to the letter (A–C) in the ANSWER BOOK.

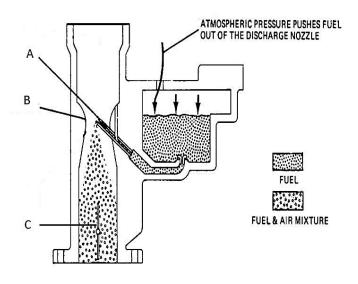


FIGURE 3 (3)

6.2 Define the term *compression ratio*, in reference to internal combustion engines.

(2) **[5]**

QUESTION 7: CRANES AND LIFTING MACHINES

- 7.1 Briefly describe THREE advantages of the infrared signal remote control when compared to the driver's cabin on the overhead crane. (3)
- 7.2 Label the different parts of a tower crane mounted on a bogie (A–E) in FIGURE 4 below. Write only the answers next to the letter (A–E) in the ANSWER BOOK.

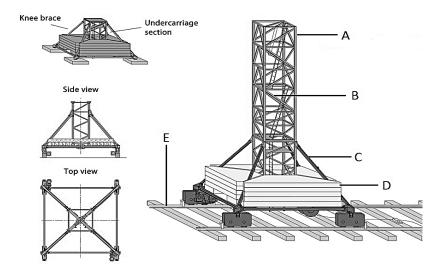


FIGURE 4 (5)

[8]

(8190373) -7-

QUESTION 8: MATERIAL AND MATERIAL PROCESSES

		TOTAL:	100
10.2	•	scribe the term service business as a business opportunity for a iness enterprise sector.	(3) [9]
10.1		pasic qualities that an entrepreneur should have in order to stand a the small business enterprise.	(6)
QUEST	ION 10: EN	ITREPRENEURSHIP	
9.3	Briefly exp	plain what is meant by diagonal communication.	(2) [12]
	Give FIVE	reasons why management relies on upward communication.	(5)
9.2	Upward of managem	communication is the flow of information from subordinates to lent.	
9.1		E listening skills that can improve the effectiveness of the cation process.	(5)
QUEST	ION 9: IND	USTRIAL ORGANISATION AND PLANNING	
8.3	State FOL	JR properties of thermosetting plastics	(4) [8]
8.2	Explain w	hat is meant by tensile strength as a property of metal.	(2)
		under load and then return to its original shape. (2 × 1)	(2)
	8.1.2	As a property of metal, elasticity is the ability of a metal to deform	
	8.1.1	Durability can be considered as a characteristic of thermosetting plastics.	
8.1		whether the following statements are TRUE or FALSE by writing only 'False' next to the question number (8.1.1–8.1.2) in the BOOK.	

TABLE 1
SERVICE FACTORS FOR THE SELECTION OF WEDGE BELTS

	TYPES OF PRIME MOVERS									
	'Soft' starts 'Heavy' starts									
	Hours	s per day	duty	Hours per day duty						
TYPES OF DRIVEN MACHINES	10 and under	Over 10 to 16	Over 16	10 and under	Over 10 to 16	Over 16				
Class 1 – Light duty Blowers and fans Centrifugal compressors and pumps Belt conveyors (uniformly loaded)	1,0	1,1	1,2	1,1	1,2	1,3				
Class 2 – Medium duty Blowers and fans Rotary compressors and pumps Belt conveyors (not uniformly loaded) Generators	1,1	1,2	1,3	1,2	1,3	1,4				
Class 3 – Heavy duty Brick machinery Compressors and pumps (reciprocating) Conveyors (heavy duty) Hammer mills Punches and presses	1,2	1,3	1,4	1,4	1,5	1,6				
Class 4 – Extra heavy duty Crushers Mills	1,3	1,4	1,5	1,5	1,6	1,8				

TABLE 2
MINIMUM PULLEY DIAMETER (mm)

Speeds of	Design power (kW)																			
faster																				
than in r/min	To 1	3,0	4,0	5,0	7,5	10	15	20	25	30	40	50	60	75	90	110	130	150	200	250
500	67	90	100	112	125	140	180	200	212	236	250	280	280	315	375	400	450	475	500	560
600	67	85	90	100	112	125	140	180	200	212	224	250	265	280	300	335	375	400	475	500
720	67	80	85	90	90	106	132	150	160	170	200	236	250	265	280	300	335	375	450	500
960	67	75	80	85	95	100	112	132	150	180	180	200	224	250	280	280	300	335	400	450
1 200	67	71	80	80	95	95	106	118	132	150	160	180	200	236	236	250	265	300	335	355
1 440	67	67	75	80	85	85	100	112	125	140	160	170	190	212	236	236	250	280	315	335
1 800	67	67	71	75	80	85	95	106	112	125	150	160	170	190	212	224	236	265	300	335
2 800	67	67	67	67	80	80	85	90	100	112	125	140	160	170	180	212	224	236	_	-

MECHANOTECHNOLOGY N3

FORMULA SHEET

Any applicable formula may also be used.

- Corrected power per belt = (basic power per belt + power increment per belt) × correction factor
- 2. Force (F) = Pressure (P) × Area (A)
- 3. Work done (W) = Force (F) \times Distance (s)
- 4. Volume (V) = Area of base (A) \times Perpendicular height $(\bot h)$